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INTRODUCTION

Monitoring-based commissioning (MBCx) combines building en-
ergy system monitoring with standard retro-commissioning (RCx) prac-
tices with the aim of providing substantial, persistent, energy savings
[Brown and Anderson 2006]. MBCx incorporates three components: 1.
Permanent energy information systems (EIS) and diagnostic tools in-
cluding energy monitoring at the whole building and sub-system level;
2. Retro commissioning, based on the information from these tools and
savings accounting, emphasizing measurement as opposed to estima-
tion or assumptions; and 3. On-going commissioning to ensure efficient
building operations and measurement-based savings accounting. MBCx
is thus a measurement-based paradigm that affords improved risk-man-
agement by identifying problems and opportunities that are missed with
periodic commissioning or basic functional testing that does not incor-
porate energy measurement.

There are three primary streams of additional energy savings from
MBCx relative to traditional RCx (Figure 1):

1.  Savings from persistence and optimization of savings from RCx
thanks to early identification of recurring problems through meter-
ing and trending. Several studies have shown that RCx savings can
degrade without an explicit effort to monitor and maintain them
[Mills 2011, Bourassa, Piette, and Motegi 2004, Claridge et al. 2000,
Piette et al. 2000].

2. Savings from measures identified through metering and trending
during the initial commissioning effort, i.e., measures unlikely to
be found from traditional test protocols alone. Haves, et al. [2008]
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provide several examples of such measures, e.g., poor control of
chilled water distribution to air handlers, unnecessary chiller op-
eration due to disabled chiller lockout, and poor VAV zone control
due to inoperative actuators on air dampers and hot water valves.

3.  Continually identified new measures. With continuous monitoring,
MBCx can identify new problems that emerge after the initial retro-
commissioning investigation stage, such as inefficiency initiated by
changes in building use, addition of new systems or processes, and
changes in functional requirements that affect energy systems.

Savings from conventional RCx with
/ periodic Re-commissioning

4

1) Added MBCx savings
from persistence

Energy Use

2) Added MBCx savings from new
measures identified by metering and
trending during initial Cx effort

3) Added MBCx savings from
continually identified new measures

1

Time

Figure 1. MBCx provides three streams of additional energy savings relative to
RCx—conceptual illustration

The findings presented here are based on in-depth benchmarking
of a portfolio of MBCx projects for 24 buildings located throughout the
University of California and California State University systems [Mills
and Mathew, 2009]. This initial set of projects was a key element of a
pilot partnership with the University of California (UC), California State
University (CSU), and investor-owned utilities (IOUs) for implementing
energy efficiency on campuses in 2004-2005. The benchmarking analy-
sis helped establish a permanent framework for a long-term, compre-
hensive energy management initiative at the 33 UC and CSU campuses
served by California’s four large IOUs (PG&E, SDG&E, SCE and SoCal-



Gas) (UC/CSU/IOU energy efficiency program, 2011).

Monitoring-based commissioning has its origins in 1990s work at
Texas A&M (Claridge, et al, 2000) and at Berkeley Lab with the sup-
port of the California energy commission public interest energy research
(PIER) Program and the California institute for energy and environment
(Piette, et al, 2000; CIEE 2011). PIER and CIEE continued working to ac-
celerate adoption of MBCx with this benchmarking effort and with other
technical assistance to the UC/CSU/IOU Partnership in the form of case
studies and a needs assessment, as well as description of system archi-
tectures for performance monitoring.

Thorough documentation of the success and lessons of the initial
MBCx portfolio led to an ongoing program that has accumulated around
$8 million in annual savings through 2010. It is now anticipated that the
program will be extended to include most major UC and CSU facilities.
The program design continues to evolve as program participants be-
come more able to exploit the benefits of extensive monitoring. Califor-
nia “third-party” energy efficiency deployment programs have adopted
the MBCx approach for the latest implementation cycle (SCE 2009), with
similar programs appearing outside California (NYSERDA 2011).

In the course of the benchmarking analysis, a quality-control / qual-
ity-assurance process for gathering and evaluating raw data from project
sites was developed, and then a number of metrics were selected to use
for project benchmarking and evaluation, including: appropriate nor-
malizations for weather and climate; accounting for variations in central
plant performance; and consideration of differences in building types. A
cost-benefit analysis of the resulting dataset was performed, including
comparisons to projects from a larger commissioning database.

ANALYSIS APPROACH

Buildings in the MBCx cohort were analyzed and compared. In the
pilot phase of the UC/CSU/IOU Partnership, special effort was made
to maintain a set of projects that included just commissioning measures
with no equipment upgrade (retrofit components). This was intended to
isolate the impact of commissioning measures and allow evaluation of
the MBCX approach. In addition, the cohort as a whole was compared
to the outcomes of other retro-commissioning projects that have been
analyzed as part of the Lawrence Berkeley National Laboratory database
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of commissioning and retro-commissioning costs and benefits. This is
referred to as the “meta-analysis” (Mills, et al, 2004; Mills 2009).

This meta-analysis normalizes diverse retro-commissioning
data to standard energy prices, and corrects for inflation so that projects
costs and savings in various years can be more accurately compared. To
use meaningful peer groups for benchmarking and analysis purposes,
the following conventions and normalizations were adopted:

e Building types: To distinguish among service levels, separate anal-
yses were conducted for laboratory facilities and other facilities
that were less energy intensive.

*  Weather and climate: Weather-normalization was achieved by
short-term monitoring of energy and actual weather, then scaling to
annual values based on normalization per long-term data. For cli-
mate normalization, non-laboratory MBCx projects were compared
to other retro-commissioned projects in the states of California, Or-
egon, and Washington. This primarily excludes the meta-analysis
projects that are in high-humidity or severe cold climates. Due to
lack of data from CA /OR /WA climates, for laboratory-type spaces,
those in the MBCx sample were compared to other labs wherever
they occur in the U.S.

e Central plant utilities: reported (i.e. “actual”) efficiency rates were
used for plant utilities.

e  Economics: standardized commercial energy prices were used, and
all cost data were inflation-corrected to 2007 levels.

ENERGY USE, COSTS, AND SAVINGS

Table 1 and Figure 2 present the benchmarking analysis of vari-
ous energy use, cost and savings metrics. The analysis includes compari-
son to the meta-analysis. For the MBCx cohort, source energy* savings of
24 kBtu/ ft2-yr (11%) were achieved, with a range of 2-25%. Median elec-
tricity savings were 1.6 kWh/ ft2-yr (7%), with a range of 1.0-17%. Peak

*Source energy is the total amount of raw fuel that is required to generate and transmit
electricity, natural gas and other forms of energy to the building. It incorporates all trans-
mission, delivery, and production losses. Source energy is a more equitable way to add
primary (e.g. natural gas) and secondary (e.g. electricity, district chilled water) types of
energy supplied to a facility.
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electrical demand savings were 0.2 W/ ft2-yr (4%), with a range of 3-11%.
It is worth noting that these savings numbers are based on a greater de-
gree of measurement than is typically found in efficiency project savings
accounting.

The aggregate commissioning cost for the 24 projects (26 build-
ings; 3.4 million square feet) analyzed was $2.9 million. Costs ranged
from $0.37-1.62 ft2, with a median value of $1.00 for buildings that im-
plemented MBCx projects. Half of the projects were in buildings con-
taining complex and energy-intensive laboratory space, with the higher
costs associated with these projects. New or upgraded whole-building
energy metering, sometimes including chilled water, hot water and/or
steam metering also added to costs. Median energy cost savings were
$0.32/ft2-yr, for a median simple payback time of 2.5 years. Thus, sig-
nificant and cost-effective energy savings were obtained. The greatest
absolute energy savings and shortest payback times were achieved in
the subset of laboratory-type facilities. It should be noted that the costs
shown include initial costs to install metering equipment. The metering
is permanently installed so these are one-time costs; however, additional
costs will exist if third-party Cx services are used for the analysis. These
ongoing costs can be reduced or eliminated if the building operators are
properly trained in how to interpret and act upon the data, in which case
no ongoing third-party Cx services are needed.

The outcomes for the MBCx cohort were compared with those for
the LBNL meta-analysis, disaggregating the analysis by climate and
building type (Figure 2). The disaggregation of impacts highlights the
importance of the examination of peer groups. Although small in num-
ber, the more energy-intensive buildings skew most values upwards for
the all-inclusive sample.

Across the MBCx sample, permanent monitoring costs were a
much higher proportion of the total than for the comparison group,
representing 40% of total. Some projects in the national meta-analysis
sample also involved a degree of monitoring (up to 47%, characterized
as “verification and persistent tracking”), but the median value for the
30 meta-analysis projects for which data are available is only 2%.

The high metering cost fraction for the MBCx program is per pro-
gram design. Sites that hosted the UC/CSU MBCx program tend to be
thinly metered, as they are usually on campuses that are centrally me-
tered, with individual buildings often not having the building-level me-
tering emphasized by the MBCx concept.
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Thus, particularly high investments in new or upgraded metering
were required at these sites, including whole-building energy metering.
In addition, many of the campuses have chilled water, hot water, and / or
steam distribution systems. Building-level metering (“BTU meters”) for
these energy streams has significant costs that are higher than for stand-
alone buildings (e.g., steam or hot water metering can be more expensive
than gas metering, chilled water metering is in addition to electricity
metering). Energy monitoring capability is providing additional value in
the more recent years of the program, as the basis for program incentive
payments has shifted from targeted savings to actual measured savings.

Training for campus staff is another cost component intended to
ensure persistence in savings. Program partners continue to see the val-
ue in cost components aimed at obtaining persistence in savings. The
Program depends on these up-front components for long-term savings
as the basic program framework still reflects the traditional retrofit pro-
gram design with a short window for savings accounting.

DEFICIENCIES AND INTERVENTIONS

A framework was applied for tabulating the deficiencies identified
and the corresponding commissioning measures implemented to correct
them. This framework was previously used in the LBNL meta-analy-
sis with refinements and clarifications for the present version. Various
metrics can be used to characterize deficiencies and measures. These in-
clude: total number, number normalized by floor area, and occurrence
by percentage of buildings.

A total of 1120 deficiency-measure combinations were identified
in the course of commissioning the 24 UC/CSU projects described in
this article (see Table 2). The most common locations of deficiencies
were in: HVAC (combined) (65% of sites), air handling and distribu-
tions systems (59%), cooling plant (29%), heating plants (24%), and
terminal units (24%). The most common measures were adjusting set
points, modifying sequences of operations, calibration, and various
mechanical fixes (each done in about two-thirds of the sites). The floor
area-normalized rate of occurrence of deficiencies and corresponding
measures ranged from about 0.1/100ksf to 10/100ksf, depending on
the issue (Figures 3 and 4).
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The choice of metric is important. For example, while a very high
number of lighting-related deficiencies were identified (and a cor-
respondingly high number per unit floor area), they were found in a
relatively small fraction of all sites, just over 10%. Most of the lighting
deficiencies were related to scheduling. Conversely, while the number
of deficiencies in heating and cooling plants was a small fraction of the
total, they were relatively common (being found in 25-20% of sites).

Three examples of how MBCx helped identify and address deficiencies

When tied to an Energy Information System, previously ignored electric and
gas meters revealed inefficient nighttime operation, simultaneous heating and
cooling, and excessive lighting. New scheduling programs resulted in nighttime
energy savings.

When the existing electric and gas meters at the building in project #12
were tied into the campus energy management system and their energy
use was trended, high nighttime electricity and natural gas use were im-
mediately obvious. Further investigation revealed that the air handlers
operated continuously—although the building was empty at night. The
chiller also operated at night, as well as the boiler, performing unintended
simultaneous heating and cooling. Much of the lighting was also found to
operate after hours. Once identified, the nighttime operations were easily
addressed by reprogramming the EMS.

The building has had electric and gas meters for a number of years.
If the meters were manually read monthly, the total usage readings ap-
parently had not triggered any concern, and would not have revealed the
simultaneous heating and cooling. This seemingly obvious problem was
not identified until the MBCx monitoring was in place.

The MBCx project also included installation of a Btu meter on the hot
water output of the building boiler. The readings from this meter revealed
that the calibration factor used for the gas meter was not properly cor-
rected for gas pressure. All the historical gas meter readings were incor-
rect. The new gas readings that are based on the correct multiplier now
compare properly with the metered hot water use.

Temperature sensors reveal faulty thermostats, broken VAV actuators; planned
chiller upgrade deemed unnecessary.

The building in project #08 has 28 zones served by rooftop units and a
single boiler and chiller. VAV RH boxes control zone temperatures using
pneumatic thermostats and actuators. The presence of pneumatic controls
means there was no monitoring available for temperatures in the spaces,
VAV box airflow, or reheat coil position.
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Figure 3. Frequency of deficiencies found through MBCx
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The MBCx project installed temperature sensors in multiple rooms in
the building that were tied back into an energy management system. Large
variations in temperatures were identified in the trended data for the vari-
ous rooms. One room might be 79°F, while another similar room was 70°F.
This led to an investigation of the pneumatic thermostats and VAV boxes.
Roughly 80% of the zones were found to not be controlling temperature
properly. A number of thermostats were found to be out of calibration.
A number of VAV boxes were found to have inoperative actuators on the
air dampers or hot water valves. There was a significant amount of un-
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productive energy use in heating, cooling and distributing air unnecessar-
ily. Discomfort in the building led to the chillers’ being manually started
during some hours when comfort could have been maintained without
chilled water, if given properly operating zone controls. The controls were
calibrated and any malfunctioning actuators were replaced when possible.
The recommendation was made to convert to direct digital controls at the
zone level in the future.

A project under consideration was the replacement of the chiller with a
more efficient unit. The metering determined that the annual load on the
chiller was lower than expected and that it was likely to be lower still after
repair of the zone controls. As a result, it was determined that there was
inadequate annual energy use to justify the replacement of the chiller on
the basis of energy savings.

Data trending uncovers non-delivery of chilled water. Comfort improved and
energy was saved.

The MBCx team for project #03 trended all of the points available on
the building management system. The evaluation of data from the first
air handler identified supply air and chilled water temperatures outside
of the expected performance range. The campus team investigated and
found that chilled water from the central plant was not being drawn into
the building loop. As a result, the building air handlers were delivering
air at an elevated temperature, causing them to operate at high speeds to
meet the cooling load of the building. The team modified the set points on
the loop pressure control and the VFD controller, resulting in a proper air
handler supply air temperature and an appropriately high chilled water
temperature returning to the campus loop. The metering system observed
a reduction in the building electric load and an increase in the building
chilled water load. The effect of the increased load on the chiller plant was
calculated to offset only about 20% of the fan savings. The increased chiller
electricity use occurred at night because the campus used a thermal energy
storage system at the central plant. This is an example of the analysis of
trended building energy performance data leading directly to reduced en-
ergy use at the building as well as increased comfort.

CONCLUSION

Buildings rarely perform as intended, resulting in energy use
that is higher than anticipated. Monitoring-based commissioning can
identify problems and opportunities that are missed with conventional
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approaches. While impacts vary from project to project, on a portfolio
basis, MBCx is becoming accepted as a cost-effective means of obtain-
ing significant program-level energy savings across a variety of building
types. For the 24 projects that were analyzed, costs ranged from $0.37 to
1.62/Ft2, with a median value of $1.00 for buildings that implemented
MBCx projects. Median simple payback time was 2.5 years and median
source energy savings was 11%. Thus, significant and cost-effective en-
ergy savings were obtained compared to typical commissioning projects,
despite the additional investment in permanent metering equipment.
The greatest absolute energy savings and shortest payback times are
achieved in the subset of laboratory-type facilities. Energy savings are
expected to be more robust and persistent over time for MBCx projects
than for conventionally commissioned ones, but this is difficult to con-
firm as current energy efficiency deployment program design is still not
usually conducive to long-term verification of savings. The permanent-
ly installed monitoring equipment used in MBCx becomes an enabler
for ongoing or repeat Cx activities, helping find new opportunities and
guarding existing savings from backsliding. MBCx thereby represents
an important risk-management strategy to ensure verifiable and durable
energy use reductions. The increased deployment of smart meters and
energy information systems will further support the wider use of MBCx
as routine practice and more broadly demonstrate the value measured
data as a basis for commissioning activities.
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